威尼斯人娱乐-威尼斯人娱乐城信誉怎么样_百家乐代理合作_全讯网777(中国)·官方网站

學術預告

當前位置:

網站首頁  >  學術預告  >  正文

當前位置:

網站首頁  >  學術預告  >  正文

具有諾伊曼邊界條件的時間周期非局部擴散 SIS 傳染病模型的閾值動力學


活動名稱:具有諾伊曼邊界條件的時間周期非局部擴散 SIS 傳染病模型的閾值動力學

時間:2025年5月22日16:30

地點:圖書館1111

主講人:王其如

主辦單位:數學科學學院

主講人簡介:王其如,中山大學數學學院(珠海)教授、博士研究生導師,中國工業與應用數學學會理事、數學與國防創新委員會委員、數學模型專業委員會委員,廣東省和廣州工業與應用數學學會理事長、黨支部書記。從事微分方程與動力系統、數學建模等方面的研究及應用,主持完成國家自然科學基金面上項目5項、在研1項,在國內外學術期刊J. Differential Equations、Adv. Nonlinear Anal.、J. Nonlinear Sci.、Nonlinear Anal. Real World Appl.、Discrete Contin. Dyn. Syst.、Fract. Calc. Appl. Anal.、中國科學數學(中、英文版)等發表相關學術論文140 余篇。是德國《數學文摘》和美國《數學評論》的評論員,Journal of Advances in Applied & Computational Mathematics雜志編委。

活動簡介:在本次報告中,我們研究了一個具有諾伊曼邊界條件、總人口數恒定的時周期非局部擴散易感 - 感染 - 易感(SIS)傳染病模型。首先,我們探討了時周期非局部擴散算子的譜界極限輪廓,進而分別得到了擴散率趨于零和無窮大時模型基本再生數的漸近行為。接下來,我們根據基本再生數建立了模型穩態解的存在性、唯一性和穩定性。最后,我們討論了易感人群和感染人群的小擴散率與大擴散率對疾病持續存在和消亡的影響。

版權所有?重慶師范大學 渝ICP 備05001042號 渝公網安備 50009802500172號

百家乐庄闲排| V博百家乐官网的玩法技巧和规则 中骏百家乐官网的玩法技巧和规则 | 查找百家乐群| 金钻国际| 吉利百家乐官网的玩法技巧和规则 | 大发888官网www.dafa888.com| 万全县| 澳门百家乐娱乐注册| 现金游戏网| 24向风水| 大发888娱乐客户端真钱| 澳门赌场美女| 百家乐怎样投注好| 昭平县| 太阳城百家乐主页| 百家乐官网真人游戏开户| 葡京百家乐注码| 久盛国际| 百家乐桌德州扑克桌| 龙博娱乐城| 百家乐游乐园| 百家乐官网桌布专业| 大发888注册优惠代码| 现金百家乐伟易博| 澳门百家乐注册| 免费百家乐官网过滤| 宝马会娱乐城返水| 百家乐视频游戏双扣| 百家乐官网筹码套装100片| 大发888技巧| 大玩家百家乐官网的玩法技巧和规则| 百家乐庄闲下载| 真钱百家乐官网公司哪个好| 威尼斯人娱乐城澳门威| 网上有百家乐官网玩吗| 鸿博开户| 乐享百家乐的玩法技巧和规则| 至尊百家乐官网20111110| 太阳城大酒店| 网上百家乐真实吗| 百家乐官网游戏单机牌|